
J. Plaid Mech. (1970), vot. 42, part 3, p p .  513-525 

Printed in Oreat Britain 
513 

The development of horizontal boundary layers in 
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The boundary layer on the upper surface of a horizontal plane in a diffusive, 
stratified flow is examined. The analysis shows that density diffusion increases 
the role of the buoyancy forces and causes a significant change in the properties 
of the boundary layer when compared to  the non-diffusive case. A uniformly valid 
first approximation for moderate Russell numbers is derived, and the effects of 
buoyancy and diffusion are evaluated by solving the resulting equations 
numerically. 

1. Introduction 
I n  part 1 of this series (Kelly & Redekopp 1970, hereafter referred to as I), we 

examined the boundary-layer structure for steady, stratified fluid motions on the 
assumption that the Prandtl (or Schmidt) number was very large, whereby the 
effects of density diffusion could be neglected. The results showed that three 
different regimes of flow are possible, depending on the relative magnitudes of the 
Reynolds and Russell numbers, and demonstrated that the coupling between the 
boundary layer and the external flow plays a crucial role in determining the 
overall features of the flow. 

Martin & Long (1968) considered the effect of diffusion for the flow over a 
flat plate when the velocity boundary layer grows in the upstream direction. 
They show that the diffusion boundary layer grows from the leading edge 
irrespective of the Russell number. Obviously then, the diffusion and velocity 
layers intersect somewhere over the plate surface, and diffusion can strongly 
affect the trailing-edge singularity and the existence of a downstream wake. 
The analysis of Martin & Long (1968), however, was limited to  large Schmidt 
(Prandtl) numbers and t o  the flow region near the leading edge of the plate where 
the velocity boundary layer is thick relative to  the diffusion boundary layer. 

I n  the present paper, the restriction to large Prandtl numbers imposed in I is 
relaxed in order to establish the effect of density diffusion on the flow structure in 
general and the boundary-layer properties in particular. It is known that the 
relative thickness of the viscous and diffusion boundary layers is determined 
solely by the magnitude of the Prandtl number. Hence, when the Prandtl number 
is of order unity or smaller, the coupling between the velocity and thermal fields 
can be1expected to be important, especially within the boundary layer. Also, 
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heat diffusion can contribute significantly to the magnitude of buoyancy forces 
in the boundary layer and furthermore, as the Prandtl number decreases, the 
vertical scale over which these buoyancy forces act is increased. The combination 
of these effects is investigated for the flow over a horizontal plane. The general 
flow structure above a finite plate with diffusion is discussed in $ 3 and a similarity 
solution of the boundary-layer equations with buoyancy and heat diffusion is 
derived in $4. Numerical results are presented in $ 5. 

2. Formulation 
We consider the development of the velocity and thermal boundary layers on 

the upper surface of an isothermal, horizontal plate of length L immersed in a 
fluid tha t  is in uniform motion with velocity U,. The fluid is assumed to be stably 
stratified, and tfhe stratification is assumed to derive from a linear space-distribu- 
tion of temperature given by 

TShJ = To(1 + P O % ) .  (1) 

A schematic of the flow configuration is given in figure 1.  The fluid motion is 
assumed to obey the Boussinesq equations, which for the steady flow of a viscous, 
heat-conducting fluid are 

v .q  = 0,  (2) 

(q.V)T = K,V~T (4) 

and P = POP - ao(T - T0)I. 15) 

The quantities g, p ,  p, and T are, respectively, the velocity, pressure, density, and 
temperature of the fluid at  the point (xl, z3); vo and K~ denote the kinematic vis- 
cosity and thermal diffusivity (which are constants in the limit of the Boussinesq 
approximation; a, represents the coefficient of thermal expansion; and fc is a 
unit vector in the vertical direction. Symbols with the subscript ' 0 ' correspond to 
undisturbed values a t  the altitude of the plate (x3 = 0). Use of the linear density- 
temperature relation (5) and a linear stratification in an unbounded flow is 
consistent with the Boussinesq approximation providing (ao TopO)-l is large 
compared to a characteristic vertical dimension of the phenomena being de- 
scribed (e.g. the boundary-layer thickness). 

Introducing the dimensionless state variables 

p" = = 1 -a(/3z+OT*) 
Po 

and 
1 + - [ x  - 4ap221, * - P-Po P -- Pou; FL 
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and following a procedure similar to that used in I ,  the system of equations (2) to 
(4) can be reduced to the set of coupled equations 

and 

The stream function $, Froude number FL, Prandtl number Po, Reynolds 
number RL, and operator L(x,  z, $) are defined in I, 8 represents the thermal 
driving potential across the boundary layer 

--- 

FIGURE 1. A schematic of the flow model. 

,8 is a dimensionless stratification scale (POL), and a denotes a dimensionless 
thermal expansion coefficient (ao To). The asterisk has been deleted from the 
temperature since all the variables are clearly dimensionless. In what follows, a 
will be taken to be unity, which is the case for a perfect gas, and the ratio ,818 is 
taken to be of order unity. The results can be applied to any fluid with arbitrary 
a by multiplying 8 and p by a as can be seen from (9) and (10). Both (a8) and (@) 
must be smaller than unity for the Boussinesq approximation to be valid. The 
limiting case of 8 approaching zero requires that a new dimensionless temperature 
(HT*) be defined, but then the boundary conditions will depend on 8. 

I n  I we were able to  combine the three parameters 8, p, and FL into one 
parameter, the Russell number. That is possible only in the limit of infinite 
Prandtl number whereby the temperature is constant along a streamline. When 
the Prandtl number is finite, heat diffuses across streamlines and the simplified 
representation for Tis destroyed. I n  the diffusive case, then, four basic parameters 
are required t o  describe the flow, and the characterization of the flow in a two- 
dimensional space (EL, RuL) as in I is no longer possible. 

The boundary conditions for the flow depicted in figure 1 are 

$ ( G O )  = 0, (12a)  
(126) 
(12c) 

qkz(x,O) = 0 for 0 Q x Q 1 ( 1 2 4  

T(z,O) = 1 for 0 Q x d 1. (12e) 

$&,z+co) = ~&X+-m,z) = 1,  
T ( x , z + ~ )  = T(Z+-CO,Z) = 0, 

33 2 

and 
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These conditions complete the specification of the problem under considera- 
tion. 

Now we seek to obtain an approximate solution to equations (9) and (10) 
subject to  (12) for the case when the Reynolds number is large compared to 
unity. The objective is to establish the effect stratification has on the velocity 
and temperature field near a horizontal boundary and also on the friction and 
heat transfer a t  the boundary. 

3. The flow structure for arbitrary Russell number 

fying the far-field conditions (12a, b, c) is 
The approximate solution of (9) and (10) for infinite Reynolds number satis- 

$ = z  and T = O .  (13) 

This solut,ion fails near the plate surface due to the neglect of diffusion effects. 
I n  the immediate vicinity of the plate the diffusion of vorticity and heat are 
essential to a description of the flow. We emphasize this explicitly by expanding 
the vertical scale in the manner 

where e(R,) scales the thickness of the viscous boundary layer and tends to zero 
in the limit as 12, tends to infinity. Another scale €,(Po, RL) characteristic of the 
thermal-diffusion boundary-layer thickness can be defined, but, a t  least for the 
Blasius boundary layer, it is directly related to E(RL) by the expression 

Y = WG,) ,  (14) 

This relation portrays clearly the role of the Prandtl number. In  subsequent 
sections we take the Prandtl number to be of order unity whereby the dis- 
tinction between the two scales is irrelevant. 

Substituting (14) into (9) and (10) yields the boundary-layer vorticity and 
energy equations in the forms 

and 

The new dependent variables are defined by 

and 

and the Russell number P/FL has been introduced for comparison with the results 
of I. The transformations (1s) arise from the matching requirements between the 
boundary layer and external stream (1  3 ) .  Using the parameter representation 

$(x, Z) = e(RL)'€"(x, Y) = E[Y(~)(x, y) + a(RL)Y!(2)(x, t ~ )  + . . .] 
T(x,  Z) = T(x ,  3) = W(X,  y) + A(RL) !P2'(~, Y) + . . ., 

( '8a)  

( 1 8 b )  

R u ~  = RE (19) 

as in I, we see that the inertia-viscous (Blasius) boundary-layer balance with the 
familiar scale .c = Rz* holds for n < 4, in contrast with n = 1 in the non-diffusive 
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case. Diffusion increases the role of buoyancy forces within the boundary layer 
and thereby can significantly alter the structure of the flow field. Recalling that 
pje is of order one, the direct effect of stratification (the last term in (17)) is a t  
most a second-order quantity, and the scale of the diffusion boundary layer 
(eT = (PoR,)-8) is unaffected by the stratification. 

The region of applicability of the non-diffusive approximation is now clear. It 
requires that the Prandtl number be larger than e-l = R i  for the first-order 
boundary-layer analysis when n < Q. For n > Q, the buoyancy and viscous terms 
in (16) must balance leading to the scale 

(20) E = E ! , ~  = (RLRuL)-$ = R-;(ltjI) L '  3 

and the first-order vorticity equation becomes 

The energy equation (17) for the corrresponding scale is 

which shows that, for Praiidtl numbers satisfying the condition 

(n > t) ,  (23) p - Rk27a-1) 
0 -  

the first-order equation is a balance between convection and diffusion. However, 
for Prandtl numbers smaller than that given in (23), the flow is diffusive on this 
scale. For Prandtl numbers greater than the condition (23), the first-order energy 
equation is lion-diffusive on the scale of (ZO), but a diffusion layer does exist 
with a scale smaller than (20). Similarly, one can show that when the Prandtl 
number is larger than R P - l ) ,  n > 1, the boundary-layer flow correct to  first- 
order is described by the non-diffusive solution of Martin & Long ( 1968) and, when 
the Prandtl number is smaller than RZ1, the entire flow is diffusive (eT = O( 1) ) .  
A unified view of these results is given in figure 2 where n is defined by (19) and 
m is defined by the relation 

The first-order flow characteristics are indicated in the respective domains on the 
figure. 

I n  the outer flow where diffusion effects are negligible (at least to second order), 

Po = RE. (24) 

(9) and ( 10) yield 

and T = (Pi@ (9 - 2). (25b)  

These equations are identical to  the outer flow equations in I and, therefore, 
exhibit the same characteristics depending on the magnitude of the Russell 
number. However, since the first-order boundary layer is the Blasius one for 
all n < 4, another scaling of the equations (9) and (10) is required for the parameter 
range 0 < n < 4 as compared to the range 0 < n < 1 for the non-diffusive case. 
The correct intermediate-layer scaling for the diffusive case is the same as in I, 
namely, 
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The matching conditions require that the expansions for the dependent variables 
in the intermediate layer have the form 

h 

$(x,z)  = RiinY(a,9) = R~i~[9+R~1(1-tn)3(~)(a,9)+ . . . I .  

and T ( x , z )  = IZ, tc l+tn)~(l)(a ,?3)+. . .  (0 < n < +). ( 2 7 b )  

(27a) 

-; 1 I I I I I I 
"- 1 - 0 I 3 2 1 ~ 1 

VL 

FIGURE 2 .  A unified representation of the first-order flow characteristics in Prandtl 
number-Russell number space. 

The fuiiction $(l) is determined from the solution of the Helmholtz equation as 
in I ($6)  and 

Pya, 9 )  = (p/e)%) (a, 9) .  (28) 

With these transformations, a uniformly valid first approximation to  (9) and 
(10) is possible for all Russel numbers greater than or equal to zero. The con- 
dition n = & is the critical stratification for the diffusive boundary layer and 
corresponds to a smaller stratification than the case n = 1 which is the critical 
condition for the non-diffusive boundary layer. 
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4. A similarity solution for the case n = 0 

We now consider the particular case when the Russell number is of order unity 
(n = 0). Since the Reynolds number is presumed to be large, the parameter 
e = Rj$ is small, and it is reasonable to seek solutions of equations (16) and (17) 
by means of a perturbation analysis. The boundary-layer variables are expanded 
in a sequence of the form given by (18a, b) .  Similarly, the outer flow variables are 
expressed as 

and 

where the first terms on the right-hand side are known from (13). The functions 
y(RL), a@,), A@,) are part of an asymptotic sequence and are determined by 
matching the two expansions (18) and (29). In this study we carry the expansion 
procedure only to the order indicated in (18) and (29). 

Substituting (18) into (16) and (17) yields the first-order boundary-layer 
equations 

?j?(.X, 2 )  = x + y(R,) $“”(x, 2 )  + . . .) 
T ( x ,  z )  = 0 + y(R,,) T(*)(x, 2 )  + . . .) 

(29a) 

(29b) 

and 

Introducing the variables 

the above equations reduce to the familiar similarity forms 

and 

The appropriate boundary conditions are 

fl(0) = f i ( O )  = h,(oo) = 0 and f;(oo) = hl(0) = 1. (32c) 

Note that the first-order problem depends only on one parameter, the Prandtl 
number. The solutions forf,and h,are known (cf. Schlichting 1968, pp. 126, 280). 
Using the properties of these solutions, we find the matching conditions 

y(RL) = E = RE* and -yW(z, 0) = - 1.730~4 (x > 0). (33) 

Consequently, is given by the solution of the Helmholtz equation (see I, 5 6) 
and T(l) obeys an equation analogous to (28). 

Since the displacement thickness in the downstream wake is unknown, we 
assume that the outer flow can be calculated as if the plate were semi-infinite. 
The solution for @l) (I, $6) shows that, for a semi-infinite plate, the induced 
horizontal velocity vanishes as z tends to zero. Within this approximation, there 
is no coupling between $(l) andyP@) and the gauge function a(R,) is undetermined. 
However, examining the relation for the temperature, we see that 

T(”(s, 0) = (/?/O)@’)(z, 0) = - 1*730(/?/O)& (34) 
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so that there is a coupling between the outer flow and the second-order boundary 
layer via the temperature field. The coupling is a direct consequence of the diffu- 
sion of heat. This requires that A(R,) = e and, by substituting the respective 
expansions into the boundary-layer equations, one finds that a(R,) = e as well. 

By virtue of the above results, the second-order boundary-layer equations have 
the form 

~ ~ ( x , ~ , ~ I ~ ( l ) ) - ~ ] ~ r ; ~ + ~ ( ~ , ? l , l r ( ~ ) ) Y ~ ~ + ( O I P ) R u r  a 2  5?$? = 0 ( 3 5 a )  

( 3 5 h )  

?!J 

and 

with boundary conditions 

[ ~ ( x ,  y, ~ ( 1 ) )  - - - f“(2) 1 + L(x,  y, yczl )  
Po aY2 a21 - cpp, Y y  = 0, 

w y x ,  0) = yPf’(x, 0) = Y‘k2’(x, co) = Y;;(x, CO) = !P)( .r ,  0) = 0 } ( 3 5 4  
and [17(2) (~ ,  CO) = - ( P / 8 ) 1 * 7 3 0 ~ 2 ,  

where the Russell number has been included to indicate explicitly its role, but its 
order of magnitude is assumed to  be unity. Similarity forms are possible for these 
equations also if we write 

~ ( 2 )  = xf,(r) and 5%) = x4h2(r). ( 3 6 )  

( 37 4 

( 3 7 6 )  

The equations for f 2  and h, are given by 

2.G + fl fi -fX + 2f; f 2  = - (OIP) w. [7h1 + J:p’ h, 4 . 
2h;+Po{f,%-f&+ 2f2h;f = PO(B/O) ()iff; -f1L 

subject to the conditions 

f2(0)  = f h ( O )  =fh(co) = h2(0) = 0 and h,(co) = - (/3/8) (1.730). (37c )  

The first equation has been integrated once to reduce it to  a third-order equation. 
The right-hand sides are known from the first-order solution ( 3 2 )  and comprise 
the primary forcing functions for the second-order boundary layer. A one-way 
coupling exists between ( 3 2 )  and ( 3 7 )  which proceeds from the first-order momen- 
tum equation ( 3 2 a )  to  the second-order energy equation ( 3 7 6 ) .  Furthermore, all 
equations except ( 3 2 a )  are linear. The combination of these facts simplifies 
considerably t h e  numerical solution of the above equations. 

Before discussing the numerical solutions to  the above equations, it is worth 
pointing out that  the boundary-layer expansion for the parameter range 
0 < n < 8 has the form 

$(x ,z) = RiI [‘P(x:, y) + Rft--S Y(2)(x, y) + . . .], 
T ( x ,  x )  = m ( x ,  y) +R;-W(2)(2-, y) + .... 

( 3 8 4  

( 3 8 b )  and 

The equations for Yc2) and 5?(2) are identical to (35a, b )  except that  the term 
multiplied by the parameter PIS in the energy equation (35  b and 37 b )  does not 
appear. Thus, the solution of (37a) yields the second-order velocity field for the 
entire range 0 < n < $. Furthermore, comparison of the expansions ( 2 7 )  and 
( 3 8 )  shows that the second-order boundary-layer stream function Y(2) coiitainiiig 
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the effect of buoyancy in the boundary layer is more significant than the correc- 
tion due to  the displacement effect on the outer flow for n > Q .  For the non- 
diffusive case, this occurred for n > Q. 

The above analysis can be shown to reduce to the non-diffusive case discussed 
in ( I )  by considering the limit of (32 )  and (37 )  as the Prandtl number becomes 
large. When the Prandtl number is large, the first-order temperature field h, 
decays exponentially to  zero in a thermal boundary which is of order Pi* times 
the scale of the velocity boundary layer. The forcing term on the right-hand side 
of ( 3 7 a )  then vanishes, and fi vanishes as well since it satisfies a homogeneous 
equation with homogeneous boundary conditions. Thus, noting that hi and h,“ are 
zero outside a very thin thermal layer near the wall, the solution of (37b)  is 

hz(7) = (Pi@ (fl(7) - 7)-  

@(x, Z) = Ri4 [d fl(q) + Rz-4 ~ ( 0 )  + Rn-l x$f3(q) + . . .I, 

( 3 9 )  

The expansion for the stream function must then take the form 

(40) 

and f3  is identical with the function noted asfz in I (S7 ,  equations (61 )  and ( 6 2 ) ) .  
Consequently, the difficulty encountered there (see I ,  equation ( 6 3 ) )  appears in 
the diffusive solutions also, for an extension of the preceding analysis (Po N O(1)) 
to  the next higher-order term in the boundary-layer expansion would result in a 
vorticity equation containing a non-zero forcing term a t  the edge of the boundary 
layer. This difficulty may be peculiar to the geometry of the problem, since, as 
shown in I, the boundary-layer solution is valid only for a plate of finite length. 

5. Numerical results 
Equations (32 )  and ( 3 7 )  were integrated numerically using Hamming’s modi- 

fied predictor-corrector method for the solution of general initial value problems 
(cf. Ralston & Wilf 1960, pp. 95-109). The integration was accomplished by 
transforming (32 a )  to an equivalent initial-value problem (cf. Rosenhead 1963, 
p. 223),  solving for f,, and then solving (32b) ,  ( 3 7 a ) ,  and (37b)  successively in that 
order. A maximum error bound of 1 0-4 was imposed in the numerical approxima- 
tion. If the absolute error exceeded the specified bound, the integration step-size 
was halved. Numerical solutions were obtained for a range of each of the three 
parameters Ru,, Po, andP/B in order to  determine their individual influence on the 
properties of the boundary layer. 

A measure of the effect of stratification on the boundary layer is obtained by 
evaluating its influence on the shear and heat transfer at the plate surface. 
Using the previous results, the following expressions for the skin-friction and 
heat-transfer coefficients can be derived: 
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where Rs, is the Reynolds number based on the dimensional length x1 measured 
from the leading edge of the plate, and q2(0) is defined by the relation 

= U O )  +Pi@. (43) 

The symbols 70 and qo denote the shear and heat flux, respectively, at  the plate 
surface. Stratification and buoyancy have an effect only in the second-order 
terms. The second-order temperature field was evaluated only for the case n = 0, 
but the velocity field is computed for the range 0 d n < i. 

10 I I I I I l l l l  I l 1 1 1 1 1 ~  - 

Ru2 

FIGURE 3 

I 

0.1 

0.0 I 0.1 u 1 .o 10 

PO 
FIGURE 4 

FIGURE 3. The variation of the second-order shear and heat transfer with the Russell 
number. -, Po = 1.0; - - -, Po = 0.1. 

FIGURE 4. The variation of the second-order shear and heat transfer with the Prandtl 
number (RUL = 1.0). -, /?/S = - 1 ;  ---, P / O  = 1. 

The results show that the Russell number has a very significant effect on the 
structure of the boundary layer. Figure 3 exhibits the influence of RuL on the 
skin-friction and heat transfer for both a heated and cooled wall. The second- 
order contribution to the shear changes profoundly when the Russell number is of 
order unity or larger. When the boundary is heated relative to the external stream, 
the skin-friction increases as the Russell number increases and vice versa for a 
cooled boundary. stratification then acts to prevent separation on heated 
boundaries and promotes separation, at least for large Russell numbers, on cooled 
boundaries. 

Figure 4 portrays the influence of the Prandtl number on the boundary-layer 
properties for a fixed Russell number and wall to free-stream temperature ratio. 
The Prandtl numer has a very strong effect on the shear at  the boundary. This is 
attributable to the fact that the thermal boundary-layer thickness and the first- 
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order temperature field depend strongly on the Prandtl number and, therefore, 
affect the second-order velocity field through the right-hand side of (37a). 

12.0 

10.0 (a) 

-2.0 -1.0 0 1.0 
hi (r ) 

FIGURE 5. The effect of the Russell and Prandtl numbers on the boundary-layer profiles: 
(a)  horizontal velocity, ( b )  vertical velocity, and (c) temperature. /3/S = 1. - ,Po = 1.0; 
- - -, Po = 0.1. 

Representative second-order horizontal and vertical velocity profiles and 
temperature profiles are shown in figure 5. The total velocity and temperature 
in the boundary layer can be computed from the relations 

(44) 

(45) 

and (46) 

w = -IR* (f - 7 f i ) [  f 2  - $76 (0 < n < g), 2 z1 1 

The figure clearly shows that buoyancy (RuL) and diffusion (Po) have a strong 
influence on the velocity profile, especially for large Russell numbers and small 
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Prandtl numbers. Since the second-order contribution grows with distance from 
the leading edge, these effects may be quite pronounced near the trailing edge of 
the plate. Also, when the Russell number is large (n close to  i), the mean velocity 
profile is significantly different from the Blasius profile. Stratification, therefore, 

Tli:dTo 
FIGURE 6 

11.0 

9.0 

\ 

I \  

- 1.0 0 1.0 2.0 

f h )  
FIGURE 7 ( a )  

-2.0 - 1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 - 
(fi - trfJ 

FIGURE 7 ( b )  

0 1 .0 2.0 

hdr) 
PIGUILE 7 ( c )  

FIGURE 6. The second-order shear and heat transfer as a function of the wall-to-free-stream 
temperature ratio: (RUL = 1.0, /3 = 1.0). -, Po = 1.0; - - -, Po = 0.1. 

FIGURE 7. The effect of the wall-to-free-stream temperature ratio on the boundary-layer 
profiles. (a )  Horizontal velocity: RUL = 1.0; - ,Po = 1.0; - - -, Po = 0.1. ( b )  Vertical velocity: 
Rut = 2.0, Po = 1.0. (c) Temperature: RUL = 1.0, Po = 1.0. 
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can have an important effect on the stability of a boundary layer through its 
modification of the mean profile as well as through the effect of buoyancy on the 
velocity perturbations superimposed on the mean flow. 

The wall to free-stream temperature ratio also plays a role in determining the 
characteristics of the stratified boundary layer. I ts  importance is depicted in 
figures 6 and 7 which contain results for a fixed stratification (POL = 1) and fixed 
Russell number. The function q2(0) is singular a t  T,/T, = 1 because the parameter 

in (37 b, c) goes to infinity as T, approaches To. This is a consequence of the 
temperature scaling expressed in (6). The shear is seen to increase rapidly as the 
wall is heated. 

6.  Summary 
I n  summary, the combined effect of thermal stratification and buoyancy on a 

horizontal boundary layer is greatest when the wall is heated and the Prandtl 
number is small. The Prandtl number is particularly important since it deter- 
mines the vertical scale (the thickness of the thermal boundary layer) over which 
buoyancy forces can act. Also, stratification can either enhance or impede 
separation depending on the relative temperature of the boundary and free- 
stream and the magnitude of the Froude number. 

Diffusion has a very significant effect in that it serves to emphasize the im- 
portance of the buoyancy term by coupling the velocity and thermal fields. This 
is of primary importance when the Froude number is small (or large Russell 
number) which indicates that diffusion may considerably alter the structure of 
the upstream boundary layer studied by Martin & Long (1968) and Pao (1968), 
especially in the vicinity of the trailing edge of a plate of finite length. Further- 
more, since the diffusion boundary layer always grows from the leading edge, a 
downstream momentum wake arising from the resultant density variation should 
exist even in the case when the viscous boundary layer grows in the upstream 
direction. 
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